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Hard squares with diagonal attractions 

Rodney J Baxter and Paul A Pearce 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT, 2600 Australia 

Received 23 October 1982 

Abstract. We complete the solution of the square lattice gas with nearest neighbour 
exclusion and attractive next-nearest neighbour (diagonal) interactions on the special 
surface corresponding to regimes 111 and IV of the generalised hard hexagon model. The 
interfacial tension, correlation length and sublattice density difference are calculated 
throughout these regimes by obtaining the eigenvalues of the row-to-row and corner 
transfer matrices. The associated critical exponents are found to be cc = U = 2, p = ft in 
regime 111 and K '  = v' = $, p' = in regime IV. In particular, our results confirm the recent 
proposal by Huse that regime I11 is the first-order coexistence surface (separating the 
disordered fluid phase from the square ordered solid phases) and that the regime III/regime 
IV boundary is a line of tricritical points. 

1. Introduction 

In previous papers (Baxter 1980, 1981b, Baxter and Pearce 1982; see also Baxter 
1982) attention has been focused on various aspects of the exact solution to the 
generalised hard hexagon model. This model is actually a hard square lattice gas with 
diagonal interactions L and M related to the activity z by the constraint 

(1.1) 

The hard hexagon model is obtained by taking the limit L = 0, M = --CO or vice versa. 
Here, however, we wish to focus our attention on hard squares with attractive diagonal 
interactions L,M>O. In this case, the special soluble surface (1.1) corresponds to 
regimes I11 and IV of the generalised hard hexagon model (Baxter 1980). 

Up till now interest in the generalised hard hexagon model has centred on regimes 
I and I1 that pertain to hard hexagons. Very recently, however, Huse (1982) has 
proposed that, for interacting hard squares, regime I11 actually coincides with the 
first-order coexistence surface separating the disordered fluid phase from the square 
ordered solid phases. Moreover, Huse argues that the critical boundary dividing 
regimes I11 and IV must be a line of tricritical points and, for the typical case when 
L =M,  puts forward the phase diagram shown in figure 1. This fortuitous and 
unexpected situation (previously regime I11 has only been approached from the 
disordered phase) renders regimes I11 and IV extremely interesting. In this paper, 
we confirm in detail the picture put forward by Huse. In particular, by obtaining the 
eigenvalues of the row-to-row and corner transfer matrices, we are able to calculate 
the interfacial tension, the correlation length and the sublattice densities throughout 
regimes I11 and IV. 

z = (1 -ePL)(1 -e-M)/(eL+M -eL-eM). 

@ 1983 The Institute of Physics 2239 
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Figure 1. The phase diagram for the hard square lattice gas with activity z and diagonal 
attractions L = M .  The soluble regime I11 (heavy full curve) is a line of triple points 
terminating at a tricritical point T. Along this curve the fluid phase coexists with the two 
square ordered solid phases. The soluble regime IV (broken curve) is the analytic 
continuation of regime I11 but lies entirely in the square ordered solid phase. For L less 
than its tricritical value there is a continuous transition between the fluid and solid phases. 
The locus of this transition (shown schematically by the light full curve) intersects the 
In z axis at z = 3.796 corresponding to non-interacting hard squares (Gaunt and Fisher 
1965, Baxter et a1 1980) and meets regime I11 at the tricritical point T. 

We shall use the notation of previous work (Baxter 1980, 1981b, 1982, Baxter 
and Pearce 1982): x and w are elliptic function parameters that are defined differently 
in regimes I11 and IV; A, t are variables defined for both regimes by 

n = l  f" cos(4n/5) + t2" 
= -A,[ 1 - : h t  + i(25 - 2J3)t2 + . . .] (1 .2 )  

where A, = [$(&- l)I5" = 0 . 3 0 0 2 8 . .  . and - 1  < t < 1 .  This t is the variable q2  of 
Baxter (1980):  it vanishes linearly at the tricritical point A = -A,, being there an 
analytic function of A. Thus t can be taken as the 'deviation from criticality' variable: 
it is positive in regime I11 and negative in regime IV. 

The layout of the remainder of the paper is as follows. In 8 2 ,  we solve the 
functional equations for the eigenvalues of the row-to-row transfer matrix in regime 
I11 and obtain the interfacial tension and correlation length. In 0 3,  we do the same 
for regime IV. Finally, in $ 4 ,  we present the results for the sublattice densities in 
these regimes. 

2. Transfer matrix eigenvalues: regime 111 

2.1. The eigenvalue spectrum 

In Baxter and Pearce (1982)  we set up functional equations for the eigenvalues of 
the transfer matrix V ( w ) .  In regimes I1 and I11 these equations take the form 

T ( w ) T ( x w )  = 1 + T ( x 3 w ) ,  T ( x 5 w )  = T ( w ) ,  ( 2 . l a ,  6 )  



Hard squares with diagonal attractions 2241 

where 

T ( w  ) = [ - f ( x  ) f ( x  z w  ) / f ( x w  , f ( x  w )INW 
and f ( w )  = f ( w ,  x ' )  with the elliptic function f ( w ,  q )  of nome q being defined by 

35 

f ( w ,  q )  = ( 1  - q " - ' w ) ( l  - q " W - ' ) ( l - q " )  
n = l  

( 2 . l c )  

for any q in the range - 1  < q  < 1 .  The parameters x and w are related to the 
interactions L and M by the equations 

(2 .3a ,b )  

In the physical regimes x and w lie in the ranges 

Regime I1 O < X < l ,  1 < w < x - l ,  ( 2 . 4 ~ )  

Regime 111 0 < x < 1 ,  x < w < l .  ( 2 . 4 b )  

In general, however, we regard x as a given constant and w as a complex variable. 
The eigenvalue equations ( 2 . 1 )  do not distinguish between regimes 11 and 111; their 

solutions will be eigenvalues in both regimes. Following our previous analysis of 
regime I1 (Baxter and Pearce 1982),  we conclude that the regime I11 eigenvalues must 
be of the form 

C'p.sCw) = Rw" n f ( x w / a l ) f ( x 3 w / a : )  
P 

i = l  

( 2 . 5 ~ )  
, = 1  k = l  1 = 1  

where R is complex, a,, a : ,  b,, b : ,  c k ,  d l  are complex numbers locating the zeros of 
V p , s ( w )  and n, p ,  r,  s, t are non-negative integers satisfying 

t = 2n. ( 2 . 5 6 )  

In practice, the regime I11 eigenvalues are the most difficult to analyse. Unlike other 
regimes, the complex numbers a,, a : ,  b,, b : ,  etc, need not all be unimodular in the 
limit N + CO. In addition, the zeros need not occur in pairs so that, in general, a, # a :  
and b, # 6 : .  

As in regime 11, there is in fact another constraint on the integers n,  p ,  r,  s and r. 
If we assume that n > O  and substitute (2 .5 )  into the RHS of ( 2 . 1 ~ )  with wl = a x - 3 ,  
we find that it vanishes for n choices of a. The LHS, however, vanishes if and only if 
a = a, with i = 1,2, . . . , p or a = c k  with k = 1,2, . . . , s. Hence either 

2p + 2r + s  + t = N, 

n = p + s  or n = O .  (2 .6 )  
In regime 11, n = O ( N / 3 )  as N + 00 for the largest eigenvalues so the exceptional case 
n = 0, p + s  # 0 did not arise. 

From perturbation expansions we expect that for the largest eigenvalues in regime 
I11 

V (  U') = O( 1 )  as N + m ,  x <Iwl< 1 .  ( 2 . 7 )  
For the moment, let us exclude the exceptional case n = 0, p +S # 0 and concentrate 
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on the ‘regular’ eigenvalues for which n = p + s. For these eigenvalues, it follows from 
(2.7) that n = p + s  = O( 1) as N + 03 and hence for the largest regular eigenvalues in 
regime I11 

n = p  +s, (2.8) 

In  general, for given p and s, there are many eigenvalues of the form given by (2 .5)  
and (2.8).  The integers p and s therefore label bands of eigenvalues. 

To solve the transfer matrix equation (2 .1 )  we begin by observing, from (2 .5 ) ,  that 
for largz N 

r = $(N - 4p - 3s), s = N (mod 2 ) ,  I = 2(p  + s ) .  

3’2 < I 1 < - I  /2  I T ( w ) l =  0 ( 1 ) ,  , 
I T ( w ) I = O ( X - F N ) > > l ,  x5’2 < / w  1 < x 3’2, x 9 ’ 2  < I W  ~ < x ? ’ ~ ,  (2.9) 

with e > O .  Next we define K ( w )  by 

(2 .10)  

From (2 .5) ,  In K ( w )  is then analytic and Laurent expansible in the annulus x3” < Iw 1 < 
x-l’*.  We now consider the smaller annulus xl’* < Iw 1 <x-1’2 and substitute (2 .10)  
into ( 2 . 1 ~ )  ignoring the exponentially small term on the RHS. Taking logarithms, 
Laurent expanding and equating coefficients, we can solve for In K ( w ) .  In this way 
we find 

where 

4(w) = w”2f(X1’2w-1, x 2 ) / f ( X 1 ’ 2 W ,  x2) .  (2.1 l b )  

To complete the solution for the regular eigenvalues in  regime I11 we need equations 
for the complex numbers dr  appearing in (2 .11) .  Setting w = dx-1’2 in ( 2 . l a ) ,  we find 
that 

(2 .12)  

for d = d l ,  d 2 ,  . . . , d1 or d = b l ,  62,. . . , b,. These equations, however, involve the 
solution for TP,,(wj in the annulus x ~ ’ ~ < ( M ~ ~ < x ~ ’ ~ ,  which can only be obtained by 
solving ( 2 . 1 ~ )  in the annulus x ” ~  < I w /  < x ~ ’ ~ .  Unfortunately, from (2 .9) ,  neither term 
on the RHS of ( 2 . 1 ~ )  can be ignored in this annulus so we must solve the equation 

1 + Tp,s (x s’2d) = 0 

In general we have been unable to solve this equation. 

2.2. Interfacial tension 

If N is even, the regular eigenvalues of largest modulus are obtained by setting 
( p ,  s )  = ( 0 ,  0 )  = 0 in (2.1 1). This gives 

T d w )  = 1, (2 .14)  x 3’2 < /w I < x -l’2, 
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which agrees with the partition function per site previously obtained (Baxter 1980) 
by the matrix inv-rsion trick. To solve for To(w)  in the annulus x 9 ' * <  (i.e. 
outside the physical regime) we define L ( w )  by 

r0( = - N / 2 ~  ( ( 1 - ( 1 - - i )A7 ( 1 - -y. (2.15) 

From (2.5), InL(w) is analytic and Laurent expansible in the annulus x 9 / 2 <  IwI <x3/ ' .  
Now consider the smaller annulus x ' / ~ < ~ w ~ < x ~ ' ~ .  Using (2.14) we see that ( 2 . 1 ~ )  
becomes 

(2.16) 

Substituting (2.15) into (2.16), taking logarithms, Laurent expanding and equating 
coefficients as before, we find that 

To(w) = *JiJ"(w), x 9 ' 2  < /w 1 < x3/ ' ,  (2.17) 

T o ( w ) T o ( x w )  = 2 ,  x ' I 2  < I w 1 < X 3 I 2 ,  

where 

(2.18) 

Thus far, for N even, we have found two largest eigenvalues which are given in 

J ( w )  = i$(w/x"2) = ( - w / x  1 / 2  1 / 2  f ( x w ,  x 2 ) / f ( w ,  x 2 ) .  

a period annulus by 

(2.19) 

We now have to go back and look at the exceptional case n = 0, p + s  # 0. In this 
case, we find a single 'exceptional' eigenvalue given by 

v/ 2 

1 = 1  
R rI f ( x ~ v l a , ) f ( x 3 w / a : ) ,  N even, 

R f ( x 2 w l c  1 n f ( x w l a ,  1f(x3w/a { I ,  N odd. 

(2.20) 
,,\'-I ' 2  

r = l  

Vx(w)= 

For this eigenvalue, when N is large 

(2.21) 

Hence the LHS of ( 2 . 1 ~ )  is exponentially smaller than one for w in the annulus 
x 4  < 1 < x .  It follows that 

T x ( w ) = - l ,  x 2 <  I w I < x - l .  (2.22) 

Although it is difficult to obtain Tx(w) in the annulus x 4 < l w l < x 2 ,  it  can easily be 
shown that there is only one eigenvalue of the form (2.20) using small x expansions. 

In total, for N even, we have thus found three eigenvalues of largest modulus in 
regime 111. In the large N limit, these are given by (2.19) and (2.22). The associated 
eigenvectors can be identified with linear combinations of three pure phases: fluid 
plus the two square ordered phases. Thus all three of these phases coexist in regime 
III! By the Perron-Frobenius theorem, the largest eigenvalue of the transfer matrix 
cannot be degenerate in the physical regime x < w < 1 for finite N.  In this regime the 
three eigenvalues To,+(  w ) ,  To.-(w),  TX(w) are therefore asymptotically degenerate as 
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N + CO. In the limit of large N, we in fact expect (Fisher 1969) that 

V ~ ; - ( W ) / V ~ ; + ( W )  = T ~ ~ - ( W ) / T ~ ; + ( W )  = 1 -O(e-NPu) (2.23) 

To solve for the interfacial tension U, we repeat the previous calculation of T o ; * ( w )  
IwI  < x - * I 2 ,  keeping both terms on the RHS of ( 2 . 1 ~ )  and treating 

where p = l / k B T  is the inverse temperature and a is the interfacial tension. 

in the annulus 
the smaller term as a correction. For x < I w I < 1 this gives 

d w '  
- J ( w / w ' )  ln[l*& & " ( x w ' ) ]  In T o ; , ( w )  = -Y f 27rl l w ' / = '  w 

(2.24) 

where 

and &'(w) is the derivative of & ( w ) .  
From (2.23) the interfacial tension is now given by 

-pa = lim N-'ln ln[To;-(w)/To;+(w)]. (2.26) 
N - m  

But for x ~ / ~ < I w / < x ~ / ~ ,  we have I & ( w ) l < l .  Hence, for w '  in the annulus 
x ' I 2  < Iw ' l<  x -'I2 and N large, we find 

ln[l* 42 &"(xw '13 - 4 2  G N ( x w  '). (2.27) 

Also, since N is even, ( L N ( w )  is analytic in the annulus x 2  < IwI < 1. For large N, we 
can therefore put (2.27) into (2.24) and integrate by steepest descents. Considered 
as a function of a real variable, I&(w)l has a minimum at w = -x .  In the complex 
plane this corresponds to a saddle point of l&(w)l .  Noting that the contour lw ' l=  1 
in (2.24) passes through this saddle point at w '  = -1, and using (2.26), we finally obtain 

(2.28) -pcr = In & ( - x )  = 1n[x '14f(- 1, x 2 ) / f ( - ~ ,  x 2)] = t In k ( x  ) 

where k ( x )  is the elliptic modulus given by 

n = l  
(2.29) 

In the limit x + 1 -, i.e. at the tricritical point, the interfacial tension vanishes. 
The departure from criticality is conveniently measured by the conjugate nome t 
which is related to x in regime I11 by the equations 

x = exp(-4,r2/5E), r = e-F. (2.30) 

The explicit relation between t and the interactions is given by (1.2). Transforming 
to the conjugate modulus (Baxter 1982, ch 15), (2.28) becomes 

(2.31) -pa = t In k'(t514) 

with 

In particular, near the tricritical point we find 

(2.32) 

pa - 4 P 4 ,  t + O + .  (2.33) 
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Hence the interfacial tension exponent is 

(2 .34 )  

The same result (2 .28 )  for the interfacial tension can also be obtained by considering 
the asymptotic degeneracy between the exceptional eigenvalue T x ( w )  and one of the 
regular eigenvalues To:*(w) .  Although the analysis is much more difficult, the same 
result is obtained because, for large N, the corrections to the exceptional eigenvalue 
T x ( w )  are much smaller than the corrections calculated for T o : + ( w ) .  Physically there 
is just one interfacial tension, between an ordered phase and the fluid; two ordered 
phase domains are always separated by fluid. 

5 p =5.  

2.3. Correlation length 

For N even, we have seen that there are three asymptotically degenerate maximum 
eigenvalues of the transfer matrix in regime 111. For large N, the next-largest band 
of eigenvalues are given by setting p = 1 ,  s = 0 in (2 .11 ) ,  i.e. 

Ti,o(w) = $ ( w / d i ) $ ( w / d 2 ) ,  x3’2  < Iw I < x -1’2. (2 .35 )  

In this case the complex numbers d l ,  and d 2  will in fact be unimodular. Noting that 
I$(w)l< 1 for x < Iwi < 1 ,  we then see that in the physical regime there is a gap between 
the largest and next-largest eigenvalues. 

The correlation length in the physical regime can now be obtained by integrating 
over the complete band of complex next-largest eigenvalues as in regimes I and 11. 
To do this we first derive equations for d l  and d 2  in (2 .35) .  From (2 .12) ,  d = d l  and 
d = d 2  must be two solutions of the equation 

1 + = 0. (2 .36)  

But now to find T l , d w )  in the annulus x 9 / 2 < l w I < x 3 / 2  we must solve the transfer 
matrix equation ( 2 . 1 ~ )  in the annulus x ’ / ~ < I w I < x ~ / ~ .  Using (2 .35 )  and the fact that 
$ ( x 2 w )  = $ ( w ) ,  this equation becomes 

Ti ,o(w)Ti ,o(xw)  = 1 + 4 ( w / d i ) $ ( w / d z ) .  (2 .37 )  

To proceed we need to factorise the RHS of (2 .37) .  This is achieved by using the 
identity 

(2 .38)  

which for E = * l  can be proved by standard techniques (Baxter 1982, ch 15) .  Next 
we define L ( w )  in the annulus x 4  < Iw 1 < x 2  by 

T 1 , J w )  = w N / 2 L ( W ) ( 1  - X 3 W - 1 ) N  (2 .39 )  

so that, from (2.5), In L ( w )  is analytic therein. If we now consider the smaller annulus 
x 3  < IwJ < x  , substitute (2 .38)  and (2 .39)  into (2 .37 ) ,  take logarithms, Laurent expand 
and equate coefficients we can solve for In L ( w )  as before. Doing this, we eventually 

2 
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find that 
1/2 1/2 2 1/2 1 /2  T~,O(W) = * J N ( w ) [ f ( x ,  x ~ ) ~ ( E x  d2 / d : l 2 ,  X ) ] ” ’ ~ ( - E W / X  d l  dz , x2)  

x M ( w / ~ ” ~ d ~ ) M ( w / x ~ / ~ d ~ ) ,  x 9 / 2  < Iw 1 < x 3 / 2 ,  (2.40) 

where 

(2.41) 

From (2.36) and (2.40) we conclude that d l  and d Z  are two solutions of the equation 

(2.42) 
x f ( -EX1’zd/d: /2d: /2 ,  x 2 ) M ( d / d 1 ) M ( d / d 2 )  = *l .  

Since the LHS of this equation is in fact unimodular when (dll  = Idz[ = 1 and d = d l  or 
d = d z ,  this equation is consistent with our assumption that d l  and d2 are unimodular. 
Indeed, for small x, (2.42) admits 4(Ni2) distinct solutions for d l  and d2 with Id11 = ldzl = 
1. This is the number of ways of dividing a row of N sites, with N even and periodic 
boundary conditions, into two domains-ne with no particles (vacuum) and one with 
particles on alternate sites (square ordered). 

For N even, the solutions of (2.42) give a band of 4(N12) complex next-largest 
eigenvalues of the form (2.35). We shall now assume, as seems reasonable from small 
x expansions, that in the limit N+co the solutions of (2.42) form a continuous 
distribution on the circles Jdlj = 1, Id2/ = 1 with a density p ( d l ,  d 2 ) .  We now repeat 
the arguments outlined for calculating the correlations in regimes I and I1 (Baxter 
and Pearce 1982). In both the fluid and square ordered phases we find that the 
asymptotic behaviour of the correlation between sites separated by 1 rows, for 1 large, 
is 

Here the contours are closed loops formed by two circuits about the origin on the 
Riemann surface of two sheets on which the square root function is analytic. Except 
for poles on each sheet corresponding to w = x - ’ l 2 ,  x 3 I 2 ,  etc, 4(w) is also analytic on 
this Riemann surface. For large I, it is therefore possible to evaluate the integral 
(2.43) by steepest descents. 

Let us assume that the density p ( d l ,  d z )  is analytic on the contours and can be 
analytically continued to the saddle points on each sheet corresponding to d l  = - X - ~ / ~ W  

and d Z  = - - x - ~ / ’ w .  If the contours in (2.43) are then deformed to equivalent contours 
passing through these saddle points, we find that for large 1 

(2.44) (uouO - (ao)(ar) - exp(-l(-’)[A + B  cos (d  +SI] 
where the correlation length ( is given by 

- & - I =  2 ln/$(-x1’2)l = In k ( x )  (2.45) 

and k ( x )  is the elliptic modulus given by (2.29). 
Combining (2.45) with (2.28), we obtain the exact relation 

@U( = +. (2.46) 



Hard squares with diagonal attractions 2247 

It follows that the correlation length diverges as x + 1 -, i.e. at the tricritical point, 
with an exponent 

(2 .47 )  5 
U = z *  

3. Transfer matrix eigenvalues: regime IV 

3.1, The  eigenvalue spectrum 

In regimes I and IV the functional equations for the eigenvalues of the transfer matrix 
V ( w )  take the form 

T ( w ) T ( x 3 w )  = 1 + T ( x 4 w ) ,  T ( x ’ w )  = T ( w ) ,  ( 3 . l a ,  b )  

and the elliptic function f ( w ) = f ( w ,  x’) is given by (2 .2) .  This time the parameters x 
and w are related to the interactions L and M by the equations 

In the physical regimes x and w lie in the ranges 

Regime I -1 < x  <o, x 2 < w < 1 ,  ( 3 . 3 ~ )  

Regime IV - 1 < x < o ,  1 < w < x - 2 .  ( 3 . 3 b )  

The solutions to the eigenvalue equations (3 .1 )  are the same in regimes I and IV. 
Perturbation expansions, however, suggest that for the largest eigenvalues in 
regime IV 

V ( w )  = O ( w N l 2 )  as N + m ,  1<Iwl<lxI-2. (3 .4 )  

IT(x4w) l  = O(lxl-”) >> 1 ,  

( T ( x 4 w  )I = O(lx  I F ” )  << 1, lxl<Iwl<lxl-’, (3 .5)  

Using this in (3 .1)  we find, as in regime I, that for large N 

x4<Iwl<IxI ,  

with E > O  so that one of the terms on the RHS of ( 3 . 1 ~ )  is exponentially larger than 
the other. From the regime I results (Baxter and Pearce 1982) ,  it now follows that 
the largest eigenvalues in regime IV are of the form 

where R is complex, s is a non-negative integer satisfying 

s = N (mod 2 ) ,  s = O(1) asN+oo,  (3 .7 )  

and the complex numbers ai and bk, locating the zeros of V s ( w ) ,  are unimodular in 
the limit N + 00. The index s labels bands of eigenvalues. 
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To solve the transfer matrix equations (3.1) in the limit N + m ,  we define L(w) 
in the annulus Ix 1 < /w I < Ix by 

5 

L(w) n (1 - x w / b , , ) ( l  - X W l N  
- (N+si /Z  Ts(w) = w 

k = l  
(3.8) 

so that In L(w) is analytic therein. Now consider the smaller annulus /x I < /w I < 1x 1-l. 

In this annulus (3.la) then becomes 

(3.9) 

if we ignore the exponentially small term on the RHS. Taking logarithms, Laurent 
expanding and solving in the usual way, we find that 

T(w)T(w/x2) = 1, Ix 1 < Iw I < lx I-l,  

5 

T s ( w ) = d N ( w )  n 4 ( w / b k ) ,  1x1 < l w l <  lx l -3,  (3.10) 
k = l  

where 

(3.11) c$(w)= w -1/2 f ( x w , x 4 ) / f ( x w - l , x 4 ) .  

The solution in the remainder of the period annulus is given by the relation 

T s ( w )  = T s ( w / x ) ~ s ( w / x 2 ) ,  x 2  < I w 1 < /x 1 .  (3.12) 

If we set w = 6 , C 4  in the transfer matrix equation ( 3 . 1 ~ )  the LHS vanishes and 

1 + Ts(b,) = 0. (3.13) 

That is, since 4 - ' ( w )  = 4 ( w - ' ) ,  the 6, are solutions of the equations 
S 

d"(6,) = - n 4(bk/b , ) ,  j =  1,2,. . . , s .  (3.14) 

Since l 4 ( w ) l =  1 when /wI = 1, the equations are consistent with the requirement that 
the 6, be unimodular. 

For N even, the transfer matrix V ( w )  has two largest eigenvalues in the physical 
regime 1 < w < x - ~  given by (3.10) with s = 0. i.e. 

To.*(w)  = * 4 N ( W ) .  (3.15) 

These correspond to the two possible square ordered phases and agree with the 
partition function per site previously calculated (Baxter 1980) for regime IV by the 
matrix inversion trick. For each positive integer s, such that s = N(mod 2), (3.10) and 
(3.14) give a band of [2N/(N+s)](iET:j$) complex eigenvalues. This is the number 
of ways of placing r = t ( N  -s) particles on a row of N sites, with periodic boundary 
conditions, such that no two particles are adjacent. For these bands of eigenvalues 
we shall assume that the solutions of (3.14) form continuous distributions on the 
circles lblJ = 1, /b21 = 1, etc with densities p ( b l ) ,  p ( b l ,  b2) ,  etc. 

k = l  

3.2. Interfacial tension 

As for regime 111, the interfacial tension U in regime IV can be calculated from the 
asymptotic degeneracy of the pair of largest eigenvalues To,* (w) .  Here, however, we 
shall calculate the interfacial tension by an alternative method. Let us consider a 
large P x N lattice with N much greater than P under the constraint P = 0 (mod 2), 
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N = 1 (mod 2). These constraints force a mismatched vertical seam into the domain 
structure of the model. The interfacial tension U is then related to the excess free 
energy above the bulk free energy for such a system by 

-pa = lim lim P-’ In Tr[T(w)/To,+(w)]P. (3.14) 
P-m N-m 

If N is odd, (3.10) and (3.14) give a band of N complex largest eigenvalues in the 
physical regime 1 < w < x - ~  with s = 1. The lower bands of eigenvalues with s > 1 
should not contribute to the RHS of (3.16) in the limit P + CO. For large P we then obtain 

(3.17) 

As before, the integral can be evaluated by steepest descents. Using the symmetry 
4 ( x 2 w )  =4(w-’ ) ,  we find that the relevant saddle point of I ~ ( W ) \  occurs at w = -x-’, 
Provided p(bl)  is analytic in the annulus 1x1 < I w l <  IxI-’, the contour Jbl l  = 1 in (3.17) 
can now be deformed to an equivalent contour passing through the saddle point 
b l  = -xw. Doing this and using (3.16) we obtain 

--PO- =ln4(-x- l )  = l n [ ( ~ l ” ~ f ( - l ,  x4)/f(-x2, x4 ) ]= i ln  k ( x 2 )  (3.18) 

In the limit x + -1 +, i.e. at the tricritical point, the interfacial tension vanishes. 

x = -exp(-.n2/5E), t = -e-F (3.19) 

where k (x) is the elliptic modulus given by (2.29). 

Transforming to the conjugate modulus (Baxter 1982, ch 15)  using the equations 

(3.18) becomes 

-PO- = t In / ~ ‘ ( l t / ~ ’ * )  (3.20) 

where k ’ ( x )  is the complementary elliptic modulus given by (2.32) and t is given by 
(1.2). It follows that near the tricritical point 

PO- - 41t 1 5 ’ 2 ,  t + O - ,  (3.21) 

and hence the interfacial tension exponent is 

(3.22) , 5  
/L = I .  

3.3. Correlation length 

We now calculate the correlation length in the physical regime 1 < w < x - ~ .  If N is 
even, s = 0 gives a pair To,*(w) of largest eigenvalues. The next-largest eigenvalues 
are then given by setting s = 2. In this case (3.10) and (3.14) give a band of N 2 / 4  
complex eigenvalues. Noting that / 4 ( w ) l <  1 for 1 < 1w 1 < x - ~ ,  we see that the gap 
between the largest and next-largest eigenvalues is 

(3.23) 

If we now repeat the arguments outlined for calculating the correlations in the 
other regimes, we find that the asymptotic behaviour of the correlation between sites 
separated by I rows, for I large, is 

TI ( w 1 / To; + ( w 1 = 4 ( w/b 114 ( w/b2). 
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Here again the contours are closed loops formed by two circuits about the origin on 
the Riemann surface of two sheets on which the square root function is analytic. 
Under the usual assumptions, the contours in (3.24) can be deformed to equivalent 
contours passing through the saddle points on each sheet corresponding to b1 = -xw,  
bz = -xw.  Evaluating the integral by steepest descents, we then find that for large 1 

(3.25) (uouI) - (uo)(ul) - exp(-It-')[A + B c o s ( d  + S)] 
where the correlation length 6 is given by 

-6-' = 2 In d ( - x - * )  = In k ( x Z ) .  (3.26) 

Combining (3.26) with (3.18) we again obtain the relation 

(3.27) 

The correlation length therefore diverges as x + -1 +, i.e. at the tricritical point, with 
an exponent 

(3.28) 

1 pat = 2. 

S 
U' = 5. 

4. Sublattice densities 

The sublattice densities p k  of the generalised hard hexagon model can be calculated 
using corner transfer matrices (Baxter 198 la) .  An intriguing feature of the calculations 
is that various Rogers-Ramanujan-type identities occur naturally in the working 
(Baxter 1981b), involving the functions 

m m 

G ( ~ )  = n [(I - x s n - 4 ) ( 1  -.P~)I-~, H ( ~ )  = n [(I - x 5 n - 3 ) ( 1  -xsn-2)1-1, 
n = l  n = l  

(4.1) 

4.1.  Regime 111 

If regime I11 is approached from the fluid phase, then the system is homogeneous. 
This is the case that has been considered previously (Baxter 1980, 1981b, 1982). 
There is just one density pf,  given by 

2 where q = x  , 

r i  = x H ( x ) / G ( x ) ,  

(4.2) 

(4.3) 

i =  1 

and T is the set of m 'spins' (or occupation numbers) ul, u2,. . . ,U,,,. Each ui can 
take the values 0 and 1, but two adjacent spins cannot both be 1, i.e. 

UjUj+l = 0 f o r j = 1 , 2  , . . . ,  m + l .  (4.5) 
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The s, are the 'ground state' values of the U,, and for the fluid phase they have the values 

s, = 0 for j 2 1. (4.6) 

The expression (4.4) involves the 'boundary' spins u ~ + ~ ,  umt2, which are to be fixed 
at their ground state values: 

u m + 1  = S m + l ,  U m i 2  = S m t 2 .  

The summations in (4.2) are over all values of T = {u1, . . 
(4.5). Ultimately m is to become infinite. 

It is convenient to define 

X;~C = qYj(u,+,-u,n,+2)  , 
n 2 . .  . . . Om 

where the summation in the exponent is over j = 1, , 
given the values 

U1 = a, V m + l = b ,  um+2 = c. 

(4.7) 

, um}, subject to the restriction 

( 4 . 8 ~ )  

. , m, and u1, u m t l ,  ~ m + 2  are 

(4.86) 

Then by performing the u1 summations explicitly, (4.2) can be written as 

Pr = xH i x  IF( 1 ) / [ G  (X )F(O) + xH (X IF( 111, (4.9) 
where 

F ( a )  = x:"O. (4.10) 

From (4.8) it is easily seen that Xibc satisfies the recurrence relations 

x;00 = X a O O  m-1  +x:?,, x;1° = q m x m - l ,  a01 xaol m =XCl,"_", +q-"x",'_O1. 
(4.11) 

In the previous calculations by one of us (Baxter 1981b, 1982), m was taken to 
be infinite as soon as possible. However, Andrews (1981) has shown that Xkoo can 
be calculated conveniently even for m finite, in fact 

xtoO = 1 q n ( 3 n c l i l Z  4 r [ m - y - 2 r ] q [ r : n ]  

n . r 3 0  q z  

CO 

= ( - ~ ) A ~ S A Z + A [  ] , 
h=-CO am-SA q 

Xko0 = q 
n J Z 0  

m m = (-1)*qSAz-3A[ ] , 
h=-m l+am-SA q 

where a, is the largest integer not exceeding im, and 

( l -qN) (1 -qN- l ) ,  . , ( l -qN-M+'  [:Iq= ( l - q M ) ( l - q M - l ) . . . ( l - q )  i f M a o ,  

( 4 . 1 2 ~ )  

(4.126 ) 

= O  if M < 0 and N 2 0 .  (4.13) 
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Now taking the lirnit m + 00, noting that )q(  < 1, the r-summations can be performed 
in (4.12), while the A-summations can be performed by using the identity 

W 

(4.14) A A ( A + I ) / Z  - A  f ( w , 4 ) =  c (-1) 4 w ,  
A = - W  

f ( w ,  4 )  being defined by (2.2). Then (4.12) and (4.10) give 
cc 

F ( 0 ) =  c q n ( 3 n + 1 ) / 2  /[(S)n (4 ; q 2 ) n + 1 I =  G (qz)Q(q  ’)/Q(s ), (4.15~) 

/ [ ( q ) n ( q ;  q 2 ) n + 1 1  = ~ ( 4 ~ ) ~ ( 4 ~ ) / ~ ( 4 ) ,  (4.155) 

n = o  
W 

3n(n  + 1 ) / 2  F(1)= c 4 
n=O 

where 
n - 1  

(a;q),,= (l-aq’) (4.16) 
I = o  

( ~ ) , i  = ( 4 ;  s ) n  = n (1 -4’)-  (4.17) 

Thus F ( 0 )  and F(1) can each be written either as an infinite sum or as a product. 
The equivalence of the two forms is a mathematical identity of Rogers-Ramanujan 
type (equations (46) and (44) of Slater (1951)). Substituting the product forms into 

j = l  

(4.9) and using Rogers’ identity 

G(x)G(x4)  +xH(x)H(x4)  = [P(-x)]’, 

(equation (2) of Birch (1975)), we find that 

Pf = xH(x)H(x4)/[p(-X)IZ, 

which is the result previously reported (Baxter 198 

(4.18) 

(4.19) 

b). - -  
As Huse has pointed out, regime I11 can also be approached from the solid phase. 

The system is then inhomogeneous, having one density (pl)  on one sublattice, another 
density (pz)  on the other. These sublattice densities are again given by (4.2)-(4.7), 
with pf replaced by Pk, the only difference being that now we must use the ground 
state appropriate to the ordered state of the square lattice, i.e. (4.6) is to be replaced 

sZi+k = 1, SZlck-1 = 0 ,  (4.20) 

for all integers j .  Here k determines which ordered state is being considered, and 
which sublattice density is being calculated: it is either 1 or 2. (These ground states 
(4.20) are the same as those of regime IV.) 

Using these ground-state spin values in (4.4) and (4.7), we obtain equations 
analogous to (4.9): 

(4.21) 

by 

Pk = xH (X  )Fk ( 1 ) / [ G  (x )Fk (0 )  f xH(x )Fk ( 111 

for k = 1,2, where Fk(0) and Fk(1) are given by 

(4.22~) F l ( a )  = q - m / Z ~ k l o ,  F z ( a ) = q  m if m even, 

Fl(a)  = q(m+l) /ZXknl ,  F2(a)=q m if m odd. (4.22 b ) 

m / Z X a O l  

- (  m + 1 ) / 2 X a  10 
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Comparing (4.9) and (4.10) with (4.21) and (4.22), we see that the three densities 
pf, p l ,  p2  correspond to the three functions X:","", X:'' and X:". These in turn 
correspond to the three choices of the boundary condition (4.7), so Huse's observation 
neatly and naturally completes the set of equations. 

We can calculate X:" and X:'' from the first two equations in (4,11), using 
Andrews' results (4.12). Substituting the results into (4.22), then letting m -P CO, we 
obtain 

Fr(O)=l+ n = l  f k a 3 n / 2  (q2)n [2k ;Y1- '3, 
( 4 . 2 3 ~  

(4.23d 

In each case the second form, involving two functions f, comes from the A-series 
in (4.12). Each is a series divided by Q ( q ) ;  equation (4.14) has been used to write 
the series in closed form. (Even values of A in (4.12) give the first f-function, odd 
values the second.) 

These series can be rearranged. Noting that Q(x)G(x)  = f ( x 2 ,  x 5 ) ,  Q ( x ) f f ( x )  = 
f ( x ,  x ' )  and using q = x 2  and (4.14), we find that 

Fi(0) = b [ Q ( - x ) H ( - - x )  - Q ( x  )H(x) l lQ(x  '1, 
Fi(1) = ) G ( x )  + Q ( - x ) G ( - x  ) I / Q ( x ' ) ,  

Fz(0) = :[Qb ) H ( x  + Q(-x ) H ( - x  )I/Q(x '1, 
F2( 1) = &-'[Q(-x )G (-x) - Q (X )G(x ) ] / Q ( x  '1. 

(4.24) 

Thus again we can write the results very neatly in terms of the functions G, H 
and Q. Substituting them into (4.21) and using the identity 

G ( x ) H ( - x )  + G ( - x ) H ( x )  = 2/[P(x2)12 (4.25) 

(equation (23) of Birch (1975): this identity was stated by Ramanujan and proved 
by Watson (1933)), we obtain 

P 1 = tH(x ) [ P ( x  2)12[Q(x ) G ( x  1 + Q (-x )G (-x )l/Q (-x 1, 
P Z  = t H ( x  ) [ P ( x  2)12[Q(-~)G ( - x  1 - Q(x  )G ( X  ) ] / Q ( - x  1. 

(4.26) 

Thus the mean total density in the solid phase of regime I11 is 

P ~ = ~ ( P I  + ~ 2 )  =:G(-x)H(x)[P(x2)l2,  (4.27) 
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and the order parameter is 

R = p i  -p2  = G ( x ) H ( x ) Q ( x ) [ P ( x ~ ) ] ~ / Q ( - x )  = Q(x)Q(x')/[Q(x')Q(x4)]. (4.28) 

To obtain the behaviour near the tricritical point, i.e. as x -* 1 -, we again make 
a transformation to the conjugate nome f defined by (1.2) and (2.30). Defining 

(4.29) 

and using standard elliptic function identities (Baxter 1982, pp 445-6), we obtain 

(4.30) 

(4.31) 

(4.32) 

P r = ~ l ( t ) ~ l ( r 1 ' 4 ) / [ ~ ( - t  5 / 4  )I 2 =pc-5-1 /2 t1 /4 - i (J3-  1)t  + ~ ( t ~ / ~ ) ,  

P m  =H~(~)H~(-~~/~)/[P(~ 5 / 4  11 2 = p c + 5 - 1 i 2 t 1 / 4 - t ( ~ 5 -  1 ) t + 0 ( t ~ / ~ ) ,  

R = (8/5)1/2t3/32Q(t)Q(t5)/[Q(f5/4)Q(f5/2)]= (8/5) 1 / 2  t 3/32  [1-t+t5'4+O(f2)], 

where 

pc = ( 5  -&) / lo  = 0.27639 . . , (4.33) 

is the density at the tricritical point. Since t is the 'deviation from criticality' variable, 
we see at once that we can define two tricritical exponents P1, P 2  by 

R - t P ' ,  Ap = pm -p r -  to', (4.34) 

and that 

P1 = A ,  p* =a. (4.35) 

Here P 1  corresponds to the difference between the sublattice densities in the solid 
phase; p2 corresponds to the density discontinuity between the fluid and solid phases. 

It is interesting to note from (4.30) and (4.31) that pf and pm differ only in the 
sign of t 1/4, so are analytic continuations of one another. This is despite the fact that 
their derivations, and the x-expressions (4.19) and (4.27), seem to have no particular 
connection. 

4.2. Regime IV 

The two sublattice densities in regime IV have been obtained previously (Baxter 
1981b, 1982). For completeness we list the results: 

P m  = + ( P I  + P Z )  = $G(x)H(-x)[P(x2)I2 = Hl(t)H1(t4)/[P(-t5)l2 
= P c - 5 - ' / 2 t - 1  2( J- 5 - I)t4 + O(t5) (4.36) 

R = P I  - p 2  = Q2(x2)Q(x5)/lQ(x)a'(x",3 
= (4/5) 'I2( -t)''4Q ( t ) Q 2 (  t "I/[ Q ( t 5 ) Q 2 (  -t5)] 

= (4/5)''2(-t)1'4[1 - t  -t2+O(f4)]. (4.37) 

(The first terms in these expansions are given in equation (47) of Baxter (1980), and 
equation (105) of Baxter (1981b), q 2  and p therein being equal to r. There is an error 
in those equations where they give p for regime IV: 5"' should be replaced by 
which then makes them consistent with (4.36).) 
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These parameters x and t are the same as those used in 9: 3 and equation (1.2). 
They are negative, between -1 and 0, and are related by (3.19). From (1,2), t is the 
‘deviation from criticality’ variable, so we see that in regime IV the exponent p 
associated with the sublattice density difference has the value a, while in regime I11 
it is A. Presumably this difference is connected with Huse’s observation that regime 
I11 is the boundary between the fluid and solid phases of the interacting hard squares 
system, while regime IV lies inside the solid phase. 

There are some unexpected similarities between the results for regimes I11 and 
IV. Examining the expressions (4.27) and (4.36) for pm in terms of the appropriate 
variable x, we see that they differ only in that x is replaced by -x. A corollary of 
this is that the t-expressions (4.31) and (4.36) differ only in that -t1’4 is replaced by 
t. The identity (4.25) also occurs in the working for regime IV (equation (94) of 
Baxter (1981b), and equation (14.5.53) of Baxter (1982)). 
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